Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Cell Biochem ; 123(5): 964-986, 2022 05.
Article in English | MEDLINE | ID: covidwho-1763245

ABSTRACT

The continuous spread and evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the rapid surge in infection cases in the coronavirus disease 2019 (COVID-19) evoke a dire need for effective therapeutics. In this study, we explored the inhibitory potential of a library of 605 phytocompounds, selected from Indian medicinal plants with reported antiviral and anti-inflammatory activities, against the receptor-binding domain of spike proteins of the SARS-CoV-2 wild-type and the variants of concern, including variants B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Our approach was based on extensive molecular docking, assessment of drug-likeness, and robust molecular dynamics simulations. We also identified promising inhibitory candidates against the host (human) proteins associated with SARS-CoV-2 spike activation and attachment, namely, ACE2 receptor, proteases TMPRSS2 and CTSL, and the endocytic regulator AAK1. In addition, we screened promising inhibitory compounds against the human proinflammatory cytokines- IL-6, IL-1ß, TNF-α, and IFN-γ, that are associated with the adverse cytokine storm in COVID-19 patients. Our analysis returned an encouraging list of promising inhibitory candidates that includes: abietatriene against the spike proteins of the SARS-CoV-2 wild-type and the variants of concern; taraxerol against the human ACE2, CTSL and TNF-α; ß-amyrin against the human TMPRSS2; cynaroside against the human AAK1 and IL-1ß; and friedelin against the human IL-6 and IFN-γ. Our findings provide substantial evidence for the inhibitory potential of these compounds and encourage further in vitro and in vivo studies to validate their use as safe and effective therapeutics against COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Cytokine Release Syndrome , Humans , Interleukin-6 , Molecular Docking Simulation , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Tumor Necrosis Factor-alpha
2.
J Biomol Struct Dyn ; 39(16): 6218-6230, 2021 10.
Article in English | MEDLINE | ID: covidwho-1409840

ABSTRACT

A novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) has emerged as the causative agent behind the coronavirus disease 2019 (COVID-19) pandemic. Treatment efforts have been severely impeded due to the lack of specific effective antiviral drugs for the treatment of COVID-associated pathologies. In the present research endeavour the inhibitory prospects of cyanobacterial metabolites were assessed at the active binding pockets of the two vital SARS-CoV-2 proteases namely, main protease (Mpro) and the papain-like protease (PLpro) that proteolytically process viral polyproteins and facilitate viral replication, employing an in silico molecular interaction-based approach. It was evident from our analysis based on the binding energy scores that the metabolites cylindrospermopsin, deoxycylindrospermopsin, carrageenan, cryptophycin 52, eucapsitrione, tjipanazole, tolyporphin and apratoxin A exhibited promising inhibitory potential against the SARS-CoV-2 Mpro. The compounds cryptophycin 1, cryptophycin 52 and deoxycylindrospermopsin were observed to display encouraging binding energy scores with the PLpro of SARS-CoV-2. Subsequent estimation of physicochemical properties and potential toxicity of the metabolites followed by robust molecular dynamics simulations and analysis of MM-PBSA energy scoring function established deoxycylindrospermopsin as the most promising inhibitory candidate against both SARS-CoV-2 proteases. Present research findings bestow ample scopes to further exploit the potential of deoxycylindrospermopsin as a successful inhibitor of SARS-CoV-2 in vitro and in vivo and pave the foundation for the development of novel effective therapeutics against COVID-19.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2
3.
Molecules ; 26(17)2021 Aug 24.
Article in English | MEDLINE | ID: covidwho-1374471

ABSTRACT

The emergence of COVID-19 continues to pose severe threats to global public health. The pandemic has infected over 171 million people and claimed more than 3.5 million lives to date. We investigated the binding potential of antiviral cyanobacterial proteins including cyanovirin-N, scytovirin and phycocyanin with fundamental proteins involved in attachment and replication of SARS-CoV-2. Cyanovirin-N displayed the highest binding energy scores (-16.8 ± 0.02 kcal/mol, -12.3 ± 0.03 kcal/mol and -13.4 ± 0.02 kcal/mol, respectively) with the spike protein, the main protease (Mpro) and the papainlike protease (PLpro) of SARS-CoV-2. Cyanovirin-N was observed to interact with the crucial residues involved in the attachment of the human ACE2 receptor. Analysis of the binding affinities calculated employing the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) approach revealed that all forms of energy, except the polar solvation energy, favourably contributed to the interactions of cyanovirin-N with the viral proteins. With particular emphasis on cyanovirin-N, the current work presents evidence for the potential inhibition of SARS-CoV-2 by cyanobacterial proteins, and offers the opportunity for in vitro and in vivo experiments to deploy the cyanobacterial proteins as valuable therapeutics against COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Bacterial Proteins/pharmacology , COVID-19 Drug Treatment , Coronavirus Protease Inhibitors/pharmacology , Antiviral Agents/therapeutic use , Bacterial Proteins/therapeutic use , Bacterial Proteins/ultrastructure , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/ultrastructure , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/metabolism , Coronavirus Papain-Like Proteases/ultrastructure , Coronavirus Protease Inhibitors/therapeutic use , Coronavirus Protease Inhibitors/ultrastructure , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Interaction Mapping , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/ultrastructure , X-Ray Diffraction
4.
J Biomol Struct Dyn ; 40(10): 4532-4542, 2022 07.
Article in English | MEDLINE | ID: covidwho-972809

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), presents an unprecedented challenge to global public health with researchers striving to find a possible therapeutic candidate that could limit the spread of the virus. In this context, the present study employed an in silico molecular interaction-based approach to estimate the inhibitory potential of the phytochemicals from ethnomedicinally relevant Indian plants including Justicia adhatoda, Ocimum sanctum and Swertia chirata, with reported antiviral activities against crucial SARS-CoV-2 proteins. SARS-CoV-2 proteins associated with host attachment and viral replication namely, spike protein, main protease enzyme Mpro and RNA-dependent RNA polymerase (RdRp) are promising druggable targets for COVID-19 therapeutic research. Extensive molecular docking of the phytocompounds at the binding pockets of the viral proteins revealed their promising inhibitory potential. Subsequent assessment of physicochemical features and potential toxicity of the compounds followed by robust molecular dynamics simulations and analysis of MM-PBSA energy scoring function revealed anisotine against SARS-CoV-2 spike and Mpro proteins and amarogentin against SARS-CoV-2 RdRp as potential inhibitors. It was interesting to note that these compounds displayed significantly higher binding energy scores against the respective SARS-CoV-2 proteins compared to the relevant drugs that are currently being targeted against them. Present research findings confer scopes to explore further the potential of these compounds in vitro and in vivo towards deployment as efficient SARS-CoV-2 inhibitors and development of novel effective therapeutics.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Iridoids , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Humans , Iridoids/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL